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Topological entropy

Let f: X — X be a continuous map of a compact Hausdorff

space.
For each cover U of X, let N(/) the cardinality of a minimal
subcover. Let U/ vV V be the common refinement of U, V.

Then the topological entropy of f is

htop(f) := sup lim —IogN(uvf "Uyv---v W)
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Consider the real quadratic family
fo(z):=22+c ce[-2,1/4]

How does entropy change with the parameter ¢?
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Question : Can we extend this theory to complex polynomials?



The function ¢ — hyp(fe, R):

» is continuous and monotone (Milnor-Thurston, 1977).

Remark. If we consider f, : C — C entropy is constant

~

hiop(fz; €) = log 2. (Lyubich 1980)



Mandelbrot set

The Mandelbrot set M is the connectedness locus of the
quadratic family

M={ceC : f(0) » oo}
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Hyperbolic components
Each hyperbolic component has a period, and is biholomorphic
to the disk.
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External rays
Since C \ M is simply-connected, it can be uniformized by the
exterior of the unit disk

b C\D— C\ M
The images of radial arcs in the disk are called external rays.
Every angle 6 € R/Z determines an external ray

R(6) == ®u({p€2™ : p > 1})
An external ray R(0) is said to land at x if

lim & (pe®™?) = x
p—1

A\ 4
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Theorem (Douady-Hubbard, '84)
If0 € Q/Z, then the external ray R(0) lands and determines a
postcritically finite quadratic polynomial fy.

» If 0 = 2 with g even, then R(f) lands at a parameter where
the critical point is pre-periodic (Misiurewicz parameter)

» If § = € with g odd, then R(6) lands at the root of some
hyperbolic component; define f; as the center of such
component. Then fy is postcritically finite with purely
periodic critical point.
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Rational rays land

Theorem (Douady-Hubbard, '84)

If6 € Q/Z, then the external ray R(0) lands and determines a
postcritically finite quadratic polynomial f,.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map R/7Z — 0.M is continuous.

As a consequence, the Mandelbrot set is homeomorphic to a
quotient of the closed disk (hence locally connected).
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Julia sets - I
The Fatou set is Q(f;) := C\ J(f). If J(f;) is connected, one
has the Riemann map

¢, : C\D — C\ K(f)
One defines the external ray
Re(6) := {®c(pe™™"), p > 1}
This map has the property
fo(De(2)) = o(2?) zeC\D
If J(f;) is locally connected, . extends to
Yo := 0D =R/Z — K(f;)

and we have
fc(Vc(e)) = 70(29)
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Thurston’s quadratic minor lamination (QML)

For each f;, pick the minor leaf of the lamination for f; (i.e, the
ray pair landing at the critical value (or its root)). The QML is
the union of all minor leaves for all ¢ € M. The quotient M g
of the disk by the lamination is a (locally connected) model for
the Mandelbrot set, and homeomorphic to it if MLC holds.
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The complex case: Hubbard trees
The Hubbard tree T, of a quadratic polynomial is

Te:= |J [f(0), £(0)]

m,n>0

It is a forward invariant, connected subset of the filled Julia set
which contains the critical orbit. The map f; acts on it.
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Let f be a polynomial whose Julia set is connected and locally
connected (e.g. a postcritically finite f). Then the core entropy
of f is the entropy of the restriction

h(f) == h(f Ir,)

where T; is the Hubbard tree of f.
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h(f) := h(f |r,)

A B 00 11 det(M — xI) =
B—C v—| 1001 =—1-2x+x*
C—-AuUD 0100 A~ 1.39534

D— AUB 0010 h ~ log 1.39534
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The core entropy

Let 8 € Q/Z. Then the external ray at angle 6 lands, and
determines a postcritically finite quadratic polynomial fy, with
Hubbard tree Ty.

Definition (W. Thurston)
The core entropy of f is

h(8) := h(ts |7,)

Question: How does h(0) vary with the parameter 67
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Question Can you see the Mandelbrot set in this picture?
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Monotonicity of entropy

Observation.
If Ri(61) and Ry (02) land together, then h(61) = h(62).

Monotonicity still holds along veins.

Let us take two rays 64 landing at ¢; and 6, landing at c».
Then we define 01 <y 02 if ¢ lies on the arc [0, ¢3].

Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
/f91 <m 0o, then
h(61) < h(62)
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Core entropy and biaccessibility

The core entropy is also proportional to the dimension of the
set of biaccessible angles (Zakeri, Smirnov, Zdunik,
Bruin-Schleicher ...)

Definition
6 is biaccessible if In # 0 s.t. R(0) and R(n) land at the same
point.

Let us denote the set of biaccessible angles as

B; := {0 € R/Z : 0 is biaccessible }
Theorem (T., Bruin-Schleicher)
If the Hubbard tree of f. is topologically finite, then

H. dim B, = If(,)(QfCZ)




The core entropy as a function of external angle

Question (Thurston, Hubbard):
Is h(6) a continuous function of 67
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The Main Theorem: Continuity

Theorem (T.)

The core entropy function h(6) extends to a continuous function
fromR/Z to R.

L L
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Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading
eigenvalue

This works, but you need to know the topology of the tree,
and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points,
which correspond to arcs between postcritical points.
Denote ¢; := f/(0) the i iterate of the critical point, and let

P:={(ci.q) i,j >0}

the set of pairs of postcritical points
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Computing the entropy: separated pair

A pair (i, /) is separated if ¢; and ¢; lie on opposite sides of the

critical point.

(1,2) + (1,4)
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The algorithm

Let P the cardinality of the set of pairs of postcritical points, and
consider A : R — RP given by

» If (i,)) is non-separated, then (i,j) — (i+1,j+ 1)

A(€ij) = €it1 j41

» If (i,) is separated, then (i,j) — (1,i+ 1)+ (1,j+1).
A(eij) = e1iv1 + €141

Theorem (Thurston; Tan Lei)
The entropy of fy is given by

h(6) = log A

where \ is the leading eigenvalue of A.
See also Gao, Jung.
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Computing entropy: the clique polynomial
Let I be a finite, directed graph. Its adjacency matrix is A such
that

Aj = #{i — j}
We can consider its spectral determinant

P(t) := det(/ — tA)

Note that A~ is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) = Z (—1)CN M)

~ simple multicycle

where:
» a simple multicycle is a disjoint union of (vertex)-disjoint
cycles
» C(~) is the number of connected components of ~
> {(~) its length.
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The clique polynomial: example

P(t) = Z (—1)C0)

~ simple multicycle
» two 2-cycles
» one 3-cycle

[ ] [
i/T » one pair of disjoint
M ! cycles (2 + 3)

Pty=1-28 -2+
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Computing entropy: the infinite clique polynomial

Let I be a countable, directed graph. Let us suppose that:
» [ has bounded outgoing degree;

» [ has bounded cycles: for every n there exists finitely many
simple cycles of length n

Then we define the growth rate of ' as :

r(r) :=limsup v/ C(T, n)

where C(I', n) is the number of closed paths of length n.



Computing entropy: the infinite clique polynomial

Let I' with bounded outgoing degree and bounded cycles.



Computing entropy: the infinite clique polynomial

Let I' with bounded outgoing degree and bounded cycles.Then
one can define as a formal power series

P(t) = Z (—1)C0)

~ simple multicycle



Computing entropy: the infinite clique polynomial

Let I' with bounded outgoing degree and bounded cycles.Then
one can define as a formal power series

P(t) = Z (—1)C0)

~ simple multicycle

Let now o := limsup {/S(n) where S(n) is the number of
simple multi-cycles of length n.



Computing entropy: the infinite clique polynomial

Let I' with bounded outgoing degree and bounded cycles.Then
one can define as a formal power series

P(t) = Z (—1)C0)

~ simple multicycle

Let now o := limsup {/S(n) where S(n) is the number of
simple multi-cycles of length n.

Theorem
Let o < 1. Then P(t) defines a holomorphic function in the unit
disk, and its root of minimum modulus is r—'.
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How to compute the core entropy without knowing

complex dynamics
Let § € R/Z, and 6; := 2/~ mod 1, and consider the diameter
{0/2,(6 +1)/2} (= major leaf). Then:

1/5

2/5

X 110
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.
4/5

» (i,]) separated < 6; and 6, lie on opposite side of diameter
» (i,j) non-separated < 6¢; and 6; lie on same side of diam.



Wedges

(1,2)

(2,3)

(1,3)

(3,4)

(2,4)

(1,4)

(4,5)

(3,5)

(2,5)

(1,5)
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Label all pairs as either separated or non-separated



Labeled wedges

Label all pairs as either separated or non-separated

(3,4)

(2,3) (2,4)

(1,2) (1,3) (1,4)

(The boxed pairs are the separated ones.)
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From wedges to graphs

Define a graph associated to the wedge as follows:
» If (i,j) is non-separated, then (i,j) — (i+1,j+ 1)
» If (i,) is separated, then (i,j) — (1,i+ 1) and
(1,)) = (1,j+1).

(3,4)

(2,3) (2,4)

(1,2) (1,3) (1,4)
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Continuity: sketch of proof

Suppose 6, — 0 (external angles)
Then Wop, — Wy (wedges)
<o) Py, (t) — Py(t) (spectral determinants)

and r(6n) — r(6)  (growth rates)
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Regularity properties of the core entropy

In fact:

Theorem (T.’15)

The core entropy is locally Hélder continuous at 6 if h(6) > 0,
and not locally Hélder at & where h(6) = 0.

Theorem (T.°17)
Let h(6) be the entropy of the real quadratic polynomial with
external ray 6. Then the local Hélder exponent a(h, 6) of h at 0
satisfies

h(6)

Oé(h, 0) = @

(Conjectured Isola-Politi, 1990)



Rays landing on the real slice of the Mandelbrot set
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Harmonic measure
Given a subset A of 9 M, the harmonic measure vy is the
probability that a random ray lands on A:

vm(A) :=Leb({0 € S' : R(0) lands on A})

For instance, take A = M NR the real section of the Mandelbrot
set. How common is it for a ray to land on the real axis?
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Entropy formula, real case

Theorem (T.)
Letc € [-2,1/4]. Then

htop(fm R)

Pos = H.dim P,

v

It relates dynamical properties of a particular map to the
geometry of parameter space near the chosen parameter.

Entropy formula: relates dimension, entropy and Lyapunov
exponent (Manning, Bowen, Ledrappier, Young, ...).

The proof is combinatorial.
It does not depend on MLC.
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Entropy formula, real case

Theorem (T.)
Letc € [-2,1/4]. Then

hiop(fe, R) _ ;

» It relates dynamical properties of a particular map to the
geometry of parameter space near the chosen parameter.

» Entropy formula: relates dimension, entropy and Lyapunov
exponent (Manning, Bowen, Ledrappier, Young, ...).

» The proof is combinatorial.
» It does not depend on MLC.
» It can be generalized to non-real veins.
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Entropy formula, complex case

A vein is an embedded arc in the Mandelbrot set.

&
.

Given a parameter c along a vein, we can look at the set P; of
parameter rays which land on the vein between 0 and c.
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Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let ¢ € v. Then

h(fc)

log 2 = H.dim B; = H.dim P,

%@
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Further directions / questions

1. Theorem (T. 2017)

Let h(0) be the entropy of the real quadratic polynomial with
external ray 6. Then the local Hélder exponent a(h, ) of h at 6

satisfies
h()

h,0) .=
a(h,0) log 2
2. The level sets of the function h(#) determines lamination

for the Mandelbrot set, and derivative of core entropy

defines measure on the lamination

3. Where are the local maxima of h?
(T., Dudko-Schleicher) Given 61 < 6> whose rays land at
the same parameter, the maximum of h(#) on [61,62] is
attained at the dyadic rational of lowest denominator
(pseudocenter)

4. Self-similarity of entropy function at Misiurewicz points
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Let 6 € R/Z. Then there exists a lamination £, on the disk such
that 01 ~ 60 if R(61) and R(62) land at the same point.
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Question. Can we define a transverse measure on L4?
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Laminations

Let # € R/Z, and f;(z) = 22 + c. Then there exists a
lamination £, on the disk such that 61 ~ 65 if R(61) and R(62)
land at the same point.

Theorem (T.°19)

There exists a transverse measure my on Ly such that

f;mg = XMy

and h(6) = log \g.

Such a measure induces a semiconjugacy between

fo : Ty — Ty and a piecewise linear model with slope )\g.
(Compare: Milnor-Thurston, Sullivan dictionary)
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Thurston’s quadratic minor lamination (QML)

For each f;, pick the minor leaf of the lamination for f; (i.e, the
ray pair landing at the critical value (or its root)). The QML is
the union of all minor leaves for all ¢ € M. The quotient M g
of the disk by the lamination is a (locally connected) model for
the Mandelbrot set, and homeomorphic to it if MLC holds.
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A transverse measure on QML

Let /1 < ¢ two leaves, and 7 a transverse arc connecting them.
Then we define

(7)== h(Te,) = h(Te,)
It gives M gps (rather, a quotient) the structure of a metric tree.

“Combinatorial bifurcation measure”?



The core entropy for cubic polynomials
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The unicritical slice

f(z)=22+c

o = = = = 9Dac



The symmetric slice

f(z)=2%+cz
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Continuity in higher degree, analytic version

Define P4 as the space of monic, centered polynomials of
degree d. One says f, — f if the coefficients of f, converge to
the coefficients of f.

Theorem (T. - Yan Gao)

Letd > 2. Then the core entropy is a continuous function on
the space of monic, centered, postcritically finite polynomials of
degree d.



The end

Thank you!
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