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Topological entropy

Let f : X → X be a continuous map of a compact Hausdorff
space.

For each cover U of X , let N(U) the cardinality of a minimal
subcover. Let U ∨ V be the common refinement of U , V.

Then the topological entropy of f is

htop(f ) := sup
U

lim
n→∞

1
n

log N(U ∨ f−1(U) ∨ · · · ∨ f−n+1(U))
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Topological entropy of real interval maps

Let f : I → I, continuous, piecewise monotone.

A lap of f is a
maximal interval on which f is monotone. The topological
entropy of f also equals (Misiurewicz-Szlenk)

htop(f ,R) = lim
n→∞

log #{laps(f n)}
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Example: the airplane map
f : I → I is postcritically finite if the forward orbits of the critical
points of f are finite.

Then the entropy is the logarithm of an
algebraic number.

A 7→ A ∪ B
B 7→ A

⇒
(

1 1
1 0

)
⇒ λ =

√
5+1
2 = ehtop(fc ,R)
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Topological entropy of real maps

htop(f ,R) := lim
n→∞

log #{laps(f n)}
n

Consider the real quadratic family

fc(z) := z2 + c c ∈ [−2,1/4]

How does entropy change with the parameter c?
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I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.

Question : Can we extend this theory to complex polynomials?



The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider fc : Ĉ→ Ĉ entropy is constant
htop(fc , Ĉ) = log 2. (Lyubich 1980)



Mandelbrot set

The Mandelbrot setM is the connectedness locus of the
quadratic family

M = {c ∈ C : f n
c (0) 9∞}



Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point
converges to an attracting periodic cycle (6=∞).

The set of hyperbolic polynomials is open, and each connected
component is called a hyperbolic component.
All polys in the same component H have the same period p,
and every hyperbolic component is biholomorphic to the disk:

λH : H → D

λH(c) := (f p
c )′(z)

where z is an attracting periodic point. The parameter c for
which λH(c) = 0 is called the center of H. The polynomial
corresponding to the center has purely periodic critical orbit.
The map λH extends to ∂H, and the parameter with λH = 1 is
called a root of H. The polynomial corresponding to the root
has a critical orbit which converges to a parabolic cycle.
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Hyperbolic components
Each hyperbolic component has a period, and is biholomorphic
to the disk.



External rays
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Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic (Misiurewicz parameter)
I If θ = p

q with q odd, then R(θ) lands at the root of some
hyperbolic component; define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even,

then R(θ) lands at a parameter where
the critical point is pre-periodic (Misiurewicz parameter)

I If θ = p
q with q odd, then R(θ) lands at the root of some

hyperbolic component; define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic

(Misiurewicz parameter)
I If θ = p

q with q odd, then R(θ) lands at the root of some
hyperbolic component; define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic (Misiurewicz parameter)

I If θ = p
q with q odd, then R(θ) lands at the root of some

hyperbolic component; define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic (Misiurewicz parameter)
I If θ = p

q with q odd,

then R(θ) lands at the root of some
hyperbolic component; define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic (Misiurewicz parameter)
I If θ = p

q with q odd, then R(θ) lands at the root of some
hyperbolic component;

define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic (Misiurewicz parameter)
I If θ = p

q with q odd, then R(θ) lands at the root of some
hyperbolic component; define fθ as the center of such
component.

Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

I If θ = p
q with q even, then R(θ) lands at a parameter where

the critical point is pre-periodic (Misiurewicz parameter)
I If θ = p

q with q odd, then R(θ) lands at the root of some
hyperbolic component; define fθ as the center of such
component. Then fθ is postcritically finite with purely
periodic critical point.



Rational rays land

Theorem (Douady-Hubbard, ’84)
If θ ∈ Q/Z, then the external ray R(θ) lands and determines a
postcritically finite quadratic polynomial fθ.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map R/Z→ ∂M is continuous.
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Julia sets
Let fc(z) = z2 + c. Then the filled Julia set of fc is the set of
points which do not escape to infinity under forward iteration:

K (fc) := {z ∈ C : f n
c (z) is bounded }

and the Julia set is its boundary:

J(fc) := ∂K (fc)
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Julia sets - II
The Fatou set is Ω(fc) := C \ J(fc).

If J(fc) is connected, one
has the Riemann map

Φc : Ĉ \ D→ Ĉ \ K (fc)

One defines the external ray

Rc(θ) := {Φc(ρe2πiθ), ρ > 1}

This map has the property

fc(Φc(z)) = Φc(z2) z ∈ C \ D

If J(fc) is locally connected, Φc extends to

γc := ∂D = R/Z→ K (fc)

and we have
fc(γc(θ)) = γc(2θ)
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If J(fc) is locally connected, Φc extends to

γc := ∂D = R/Z→ K (fc)

and we have
fc(γc(θ)) = γc(2θ)
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Thurston’s quadratic minor lamination (QML)

For each fc , pick the minor leaf of the lamination for fc (i.e, the
ray pair landing at the critical value (or its root)).

The QML is
the union of all minor leaves for all c ∈M. The quotientMabs
of the disk by the lamination is a (locally connected) model for
the Mandelbrot set, and homeomorphic to it if MLC holds.
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The complex case: Hubbard trees

The Hubbard tree Tc of a quadratic polynomial is

Tc :=
⋃

m,n≥0

[f m
c (0), f n

c (0)]

where [x , y ] is the regulated arc between x and y .
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The complex case: Hubbard trees
The Hubbard tree Tc of a quadratic polynomial is

Tc :=
⋃

m,n≥0

[f m
c (0), f n

c (0)]

It is a forward invariant, connected subset of the filled Julia set
which contains the critical orbit. The map fc acts on it.



The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally
connected

(e.g. a postcritically finite f ). Then the core entropy
of f is the entropy of the restriction

h(f ) := h(f |Tf )

where Tf is the Hubbard tree of f .
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The core entropy - example

h(f ) := h(f |Tf )

A→ B
B → C
C → A ∪ D
D → A ∪ B

M =


0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0


det(M − xI) =
= −1− 2x + x4

λ ≈ 1.39534
h ≈ log 1.39534
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The core entropy

Let θ ∈ Q/Z. Then the external ray at angle θ lands, and
determines a postcritically finite quadratic polynomial fθ, with
Hubbard tree Tθ.

Definition (W. Thurston)
The core entropy of fθ is

h(θ) := h(fθ |Tθ
)

Question: How does h(θ) vary with the parameter θ?
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Monotonicity of entropy

Observation.

If RM(θ1) and RM(θ2) land together, then h(θ1) = h(θ2).

Monotonicity still holds along veins.

Let us take two rays θ1 landing at c1 and θ2 landing at c2.
Then we define θ1 <M θ2 if c1 lies on the arc [0, c2].

Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If θ1 <M θ2, then

h(θ1) ≤ h(θ2)
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Core entropy and biaccessibility
The core entropy is also proportional to the dimension of the
set of biaccessible angles (Zakeri, Smirnov, Zdunik,
Bruin-Schleicher ...)

Definition
θ is biaccessible if ∃η 6= θ s.t. R(θ) and R(η) land at the same
point.
Let us denote the set of biaccessible angles as

Bc := {θ ∈ R/Z : θ is biaccessible }

Theorem (T., Bruin-Schleicher)
If the Hubbard tree of fc is topologically finite, then

H. dim Bc =
h(fc)

log 2
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The core entropy as a function of external angle

Question (Thurston, Hubbard):
Is h(θ) a continuous function of θ?
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The Main Theorem: Continuity

Theorem (T.)
The core entropy function h(θ) extends to a continuous function
from R/Z to R.
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Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading
eigenvalue

This works, but you need to know the topology of the tree,
and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points,
which correspond to arcs between postcritical points.
Denote ci := f i(0) the i th iterate of the critical point, and let

P := {(ci , cj) i , j ≥ 0}

the set of pairs of postcritical points
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Computing the entropy: non-separated pair

A pair (i , j) is non-separated if ci and cj lie on the same side of
the critical point.

⇒

(1,2) ⇒ (2,3)
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Computing the entropy: separated pair

A pair (i , j) is separated if ci and cj lie on opposite sides of the
critical point.

⇒

(1,3) ⇒ (1,2) + (1,4)
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The algorithm
Let P the cardinality of the set of pairs of postcritical points, and
consider A : RP → RP given by

I If (i , j) is non-separated, then (i , j)→ (i + 1, j + 1)

A(ei,j) = ei+1,j+1

I If (i , j) is separated, then (i , j)→ (1, i + 1) + (1, j + 1).

A(ei,j) = e1,i+1 + e1,j+1

Theorem (Thurston; Tan Lei)
The entropy of fθ is given by

h(θ) = logλ

where λ is the leading eigenvalue of A.
See also Gao, Jung.
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Computing entropy: the clique polynomial
Let Γ be a finite, directed graph.

Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t).

Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:

I a simple multicycle is a disjoint union of (vertex)-disjoint
cycles

I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles

I C(γ) is the number of connected components of γ
I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ

I `(γ) its length.



Computing entropy: the clique polynomial
Let Γ be a finite, directed graph. Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.



The clique polynomial: example

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

• ((

��

•

��

hh •oo

•

HH

•

??

•

OO

I two 2-cycles
I one 3-cycle
I one pair of disjoint

cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5



The clique polynomial: example

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

• ((

��

•

��

hh •oo

•

HH

•

??

•

OO

I two 2-cycles
I one 3-cycle
I one pair of disjoint

cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5



The clique polynomial: example

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

• ((

��

•

��

hh •oo

•

HH

•

??

•

OO

I two 2-cycles

I one 3-cycle
I one pair of disjoint

cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5



The clique polynomial: example

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

• ((

��

•

��

hh •oo

•

HH

•

??

•

OO

I two 2-cycles
I one 3-cycle

I one pair of disjoint
cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5



The clique polynomial: example

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

• ((

��

•

��

hh •oo

•

HH

•

??

•

OO

I two 2-cycles
I one 3-cycle
I one pair of disjoint

cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5



The clique polynomial: example

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

• ((

��

•

��

hh •oo

•

HH

•

??

•

OO

I two 2-cycles
I one 3-cycle
I one pair of disjoint

cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5



Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph.

Let us suppose that:
I Γ has bounded outgoing degree;
I Γ has bounded cycles: for every n there exists finitely many

simple cycles of length n

Then we define the growth rate of Γ as :

r(Γ) := lim sup n
√

C(Γ,n)

where C(Γ,n) is the number of closed paths of length n.
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Then
one can define as a formal power series

P(t) =
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γ simple multicycle

(−1)C(γ)t`(γ)

Let now σ := lim sup n
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S(n) where S(n) is the number of
simple multi-cycles of length n.

Theorem
Let σ ≤ 1. Then P(t) defines a holomorphic function in the unit
disk, and its root of minimum modulus is r−1.
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How to compute the core entropy without knowing
complex dynamics

Let θ ∈ R/Z, and θi := 2i−1θ mod 1, and consider the diameter
{θ/2, (θ + 1)/2} (= major leaf).

Then:

I (i , j) separated⇔ θi and θj lie on opposite side of diameter
I (i , j) non-separated⇔ θi and θj lie on same side of diam.



How to compute the core entropy without knowing
complex dynamics

Let θ ∈ R/Z, and θi := 2i−1θ mod 1, and consider the diameter
{θ/2, (θ + 1)/2} (= major leaf). Then:

I (i , j) separated⇔ θi and θj lie on opposite side of diameter

I (i , j) non-separated⇔ θi and θj lie on same side of diam.



How to compute the core entropy without knowing
complex dynamics

Let θ ∈ R/Z, and θi := 2i−1θ mod 1, and consider the diameter
{θ/2, (θ + 1)/2} (= major leaf). Then:

I (i , j) separated⇔ θi and θj lie on opposite side of diameter
I (i , j) non-separated⇔ θi and θj lie on same side of diam.



Wedges

· · ·

(4,5) · · ·

(3,4) (3,5) · · ·

(2,3) (2,4) (2,5) · · ·

(1,2) (1,3) (1,4) (1,5) · · ·
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Continuity: sketch of proof

Suppose θn → θ (external angles)

Then Wθn →Wθ (wedges)

so Pθn (t)→ Pθ(t) (spectral determinants)

and r(θn)→ r(θ) (growth rates)
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Regularity properties of the core entropy
In fact:

Theorem (T. ’15)
The core entropy is locally Hölder continuous at θ if h(θ) > 0,
and not locally Hölder at θ where h(θ) = 0.
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Let h(θ) be the entropy of the real quadratic polynomial with
external ray θ. Then the local Hölder exponent α(h, θ) of h at θ
satisfies

α(h, θ) :=
h(θ)

log 2

(Conjectured Isola-Politi, 1990)
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Rays landing on the real slice of the Mandelbrot set



Harmonic measure
Given a subset A of ∂M, the harmonic measure νM is the
probability that a random ray lands on A:

νM(A) := Leb({θ ∈ S1 : R(θ) lands on A})

For instance, take A =M∩R the real section of the Mandelbrot
set. How common is it for a ray to land on the real axis?
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I It relates dynamical properties of a particular map to the
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I Entropy formula: relates dimension, entropy and Lyapunov
exponent (Manning, Bowen, Ledrappier, Young, ...).

I The proof is combinatorial.
I It does not depend on MLC.
I It can be generalized to non-real veins.
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Entropy formula, complex case

A vein is an embedded arc in the Mandelbrot set.

Given a parameter c along a vein, we can look at the set Pc of
parameter rays which land on the vein between 0 and c.
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Further directions / questions

1. Theorem (T. 2017)
Let h(θ) be the entropy of the real quadratic polynomial with
external ray θ.

Then the local Hölder exponent α(h, θ) of h at θ
satisfies

α(h, θ) :=
h(θ)

log 2

2. The level sets of the function h(θ) determines lamination
for the Mandelbrot set, and derivative of core entropy
defines measure on the lamination

3. Where are the local maxima of h?
(T., Dudko-Schleicher) Given θ1 < θ2 whose rays land at
the same parameter, the maximum of h(θ) on [θ1, θ2] is
attained at the dyadic rational of lowest denominator
(pseudocenter)

4. Self-similarity of entropy function at Misiurewicz points
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Let θ ∈ R/Z, and fθ(z) = z2 + cθ. Then there exists a
lamination Lθ on the disk such that θ1 ∼ θ2 if R(θ1) and R(θ2)
land at the same point.

Theorem (T. ’19)
There exists a transverse measure mθ on Lθ such that

f ?θ mθ = λθmθ

and h(θ) = logλθ.
Such a measure induces a semiconjugacy between
fθ : Tθ → Tθ and a piecewise linear model with slope λθ.
(Compare: Milnor-Thurston, Sullivan dictionary)
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the union of all minor leaves for all c ∈M. The quotientMabs
of the disk by the lamination is a (locally connected) model for
the Mandelbrot set, and homeomorphic to it if MLC holds.
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Then we define
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It givesMabs (rather, a quotient) the structure of a metric tree.
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The unicritical slice
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The end

Thank you!
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