

An introduction to core entropy

Giulio Tiozzo
University of Toronto

Summary

1. What is... topological entropy?

Summary

1. What is... topological entropy?
2. A crash course in complex dynamics

Summary

1. What is... topological entropy?
2. A crash course in complex dynamics
3. The core entropy

Summary

1. What is... topological entropy?
2. A crash course in complex dynamics
3. The core entropy
4. How to compute the core entropy?

Summary

1. What is... topological entropy?
2. A crash course in complex dynamics
3. The core entropy
4. How to compute the core entropy?
5. The clique polynomial for infinite graphs

Summary

1. What is... topological entropy?
2. A crash course in complex dynamics
3. The core entropy
4. How to compute the core entropy?
5. The clique polynomial for infinite graphs
6. Further questions

Summary

1. What is... topological entropy?
2. A crash course in complex dynamics
3. The core entropy
4. How to compute the core entropy?
5. The clique polynomial for infinite graphs
6. Further questions

Topological entropy

Let $f: X \rightarrow X$ be a continuous map of a compact Hausdorff space.

Topological entropy

Let $f: X \rightarrow X$ be a continuous map of a compact Hausdorff space.
For each cover \mathcal{U} of X,

Topological entropy

Let $f: X \rightarrow X$ be a continuous map of a compact Hausdorff space.
For each cover \mathcal{U} of X, let $N(\mathcal{U})$ the cardinality of a minimal subcover.

Topological entropy

Let $f: X \rightarrow X$ be a continuous map of a compact Hausdorff space.
For each cover \mathcal{U} of X, let $N(\mathcal{U})$ the cardinality of a minimal subcover. Let $\mathcal{U} \vee \mathcal{V}$ be the common refinement of \mathcal{U}, \mathcal{V}.

Topological entropy

Let $f: X \rightarrow X$ be a continuous map of a compact Hausdorff space.
For each cover \mathcal{U} of X, let $N(\mathcal{U})$ the cardinality of a minimal subcover. Let $\mathcal{U} \vee \mathcal{V}$ be the common refinement of \mathcal{U}, \mathcal{V}.

Then the topological entropy of f is

$$
h_{\text {top }}(f):=\sup _{\mathcal{U}} \lim _{n \rightarrow \infty} \frac{1}{n} \log N\left(\mathcal{U} \vee f^{-1}(\mathcal{U}) \vee \cdots \vee f^{-n+1}(\mathcal{U})\right)
$$

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone. A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals (Misiurewicz-Szlenk)

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite.

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\begin{array}{ccc}A & \mapsto & A \cup B \\ B & \mapsto & A\end{array}$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\begin{array}{llc}A & \mapsto & A \cup B \\ B & \mapsto & A\end{array} \Rightarrow\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\begin{array}{lll}A & \mapsto & A \cup B \\ B & \mapsto & A\end{array} \Rightarrow\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \Rightarrow \lambda=\frac{\sqrt{5}+1}{2}$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\begin{aligned} A & \mapsto \\ & A \cup B \\ B & \mapsto\end{aligned} A \quad \Rightarrow\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \Rightarrow \lambda=\frac{\sqrt{5}+1}{2}=e^{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}$

Topological entropy of real maps

$$
h_{\text {top }}(f, \mathbb{R}):=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Consider the real quadratic family

$$
f_{c}(z):=z^{2}+c \quad c \in[-2,1 / 4]
$$

Topological entropy of real maps

$$
h_{\text {top }}(f, \mathbb{R}):=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Consider the real quadratic family

$$
f_{c}(z):=z^{2}+c \quad c \in[-2,1 / 4]
$$

How does entropy change with the parameter c ?

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right):$

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

[Picture is for $f_{a}(x)=a x(1-x)$.]

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right):$

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

Question : Can we extend this theory to complex polynomials?

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

Remark. If we consider $f_{c}: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ entropy is constant $h_{\text {top }}\left(f_{c}, \widehat{\mathbb{C}}\right)=\log 2$. (Lyubich 1980)

Mandelbrot set

The Mandelbrot set \mathcal{M} is the connectedness locus of the quadratic family

$$
\mathcal{M}=\left\{c \in \mathbb{C}: f_{c}^{n}(0) \nrightarrow \infty\right\}
$$

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.
The set of hyperbolic polynomials is open, and each connected component is called a

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.
The set of hyperbolic polynomials is open, and each connected component is called a hyperbolic component.

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.
The set of hyperbolic polynomials is open, and each connected component is called a hyperbolic component. All polys in the same component H have the same period p, and every hyperbolic component is biholomorphic to the disk:

$$
\begin{gathered}
\lambda_{H}: H \rightarrow \mathbb{D} \\
\lambda_{H}(c):=\left(f_{c}^{p}\right)^{\prime}(z)
\end{gathered}
$$

where z is an attracting periodic point.

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.
The set of hyperbolic polynomials is open, and each connected component is called a hyperbolic component.
All polys in the same component H have the same period p, and every hyperbolic component is biholomorphic to the disk:

$$
\begin{gathered}
\lambda_{H}: H \rightarrow \mathbb{D} \\
\lambda_{H}(c):=\left(f_{c}^{p}\right)^{\prime}(z)
\end{gathered}
$$

where z is an attracting periodic point. The parameter c for which $\lambda_{H}(c)=0$ is called the center of H. The polynomial corresponding to the center has purely periodic critical orbit.

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.
The set of hyperbolic polynomials is open, and each connected component is called a hyperbolic component.
All polys in the same component H have the same period p, and every hyperbolic component is biholomorphic to the disk:

$$
\begin{gathered}
\lambda_{H}: H \rightarrow \mathbb{D} \\
\lambda_{H}(c):=\left(f_{c}^{p}\right)^{\prime}(z)
\end{gathered}
$$

where z is an attracting periodic point. The parameter c for which $\lambda_{H}(c)=0$ is called the center of H. The polynomial corresponding to the center has purely periodic critical orbit. The map λ_{H} extends to ∂H, and the parameter with $\lambda_{H}=1$ is called a root of H. The polynomial corresponding to the root has a critical orbit which converges to a parabolic cycle.

Hyperbolic components

A quadratic polynomial is hyperbolic if its critical point converges to an attracting periodic cycle $(\neq \infty)$.
The set of hyperbolic polynomials is open, and each connected component is called a hyperbolic component.
All polys in the same component H have the same period p, and every hyperbolic component is biholomorphic to the disk:

$$
\begin{gathered}
\lambda_{H}: H \rightarrow \mathbb{D} \\
\lambda_{H}(c):=\left(f_{c}^{p}\right)^{\prime}(z)
\end{gathered}
$$

where z is an attracting periodic point. The parameter c for which $\lambda_{H}(c)=0$ is called the center of H. The polynomial corresponding to the center has purely periodic critical orbit. The map λ_{H} extends to ∂H, and the parameter with $\lambda_{H}=1$ is called a root of H. The polynomial corresponding to the root has a critical orbit which converges to a parabolic cycle.

Hyperbolic components

Each hyperbolic component has a period, and is biholomorphic to the disk.

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\hat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\hat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays. Every angle $\theta \in \mathbb{R} / \mathbb{Z}$ determines an external ray

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

External rays

Since $\hat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays. Every angle $\theta \in \mathbb{R} / \mathbb{Z}$ determines an external ray

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

An external ray $R(\theta)$ is said to land at x if

$$
\lim _{\rho \rightarrow 1} \Phi_{\mathcal{M}}\left(\rho e^{2 \pi i \theta}\right)=x
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays. Every angle $\theta \in \mathbb{R} / \mathbb{Z}$ determines an external ray

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

An external ray $R(\theta)$ is said to land at x if

$$
\lim _{\rho \rightarrow 1} \Phi_{\mathcal{M}}\left(\rho e^{2 \pi i \theta}\right)=x
$$

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even,

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even, then $R(\theta)$ lands at a parameter where the critical point is pre-periodic

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even, then $R(\theta)$ lands at a parameter where the critical point is pre-periodic (Misiurewicz parameter)

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even, then $R(\theta)$ lands at a parameter where the critical point is pre-periodic (Misiurewicz parameter)
- If $\theta=\frac{p}{q}$ with q odd,

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even, then $R(\theta)$ lands at a parameter where the critical point is pre-periodic (Misiurewicz parameter)
- If $\theta=\frac{p}{q}$ with q odd, then $R(\theta)$ lands at the root of some hyperbolic component;

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even, then $R(\theta)$ lands at a parameter where the critical point is pre-periodic (Misiurewicz parameter)
- If $\theta=\frac{p}{q}$ with q odd, then $R(\theta)$ lands at the root of some hyperbolic component; define f_{θ} as the center of such component.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

- If $\theta=\frac{p}{q}$ with q even, then $R(\theta)$ lands at a parameter where the critical point is pre-periodic (Misiurewicz parameter)
- If $\theta=\frac{p}{q}$ with q odd, then $R(\theta)$ lands at the root of some hyperbolic component; define f_{θ} as the center of such component. Then f_{θ} is postcritically finite with purely periodic critical point.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map $\mathbb{R} / \mathbb{Z} \rightarrow \partial \mathcal{M}$ is continuous.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map $\mathbb{R} / \mathbb{Z} \rightarrow \partial \mathcal{M}$ is continuous.
As a consequence, the Mandelbrot set is homeomorphic to a quotient of the closed disk

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map $\mathbb{R} / \mathbb{Z} \rightarrow \partial \mathcal{M}$ is continuous.
As a consequence, the Mandelbrot set is homeomorphic to a quotient of the closed disk (hence locally connected).

Julia sets

Let $f_{c}(z)=z^{2}+c$. Then the filled Julia set of f_{c} is the set of points which do not escape to infinity under forward iteration:

$$
K\left(f_{c}\right):=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \text { is bounded }\right\}
$$

Julia sets

Let $f_{c}(z)=z^{2}+c$. Then the filled Julia set of f_{c} is the set of points which do not escape to infinity under forward iteration:

$$
K\left(f_{c}\right):=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \text { is bounded }\right\}
$$

and the Julia set is its boundary:

$$
J\left(f_{c}\right):=\partial K\left(f_{c}\right)
$$

Julia sets

Let $f_{c}(z)=z^{2}+c$. Then the filled Julia set of f_{c} is the set of points which do not escape to infinity under forward iteration:

$$
K\left(f_{c}\right):=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \text { is bounded }\right\}
$$

and the Julia set is its boundary:

$$
J\left(f_{c}\right):=\partial K\left(f_{c}\right)
$$

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$.

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$. If $J\left(f_{c}\right)$ is connected, one has the Riemann map

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$. If $J\left(f_{c}\right)$ is connected, one has the Riemann map

$$
\Phi_{c}: \widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \widehat{\mathbb{C}} \backslash K\left(f_{c}\right)
$$

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$. If $J\left(f_{c}\right)$ is connected, one has the Riemann map

$$
\Phi_{c}: \widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \widehat{\mathbb{C}} \backslash K\left(f_{c}\right)
$$

One defines the external ray

$$
R_{c}(\theta):=\left\{\Phi_{c}\left(\rho e^{2 \pi i \theta}\right), \rho>1\right\}
$$

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$. If $J\left(f_{c}\right)$ is connected, one has the Riemann map

$$
\Phi_{c}: \widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \widehat{\mathbb{C}} \backslash K\left(f_{c}\right)
$$

One defines the external ray

$$
R_{C}(\theta):=\left\{\Phi_{c}\left(\rho e^{2 \pi i \theta}\right), \rho>1\right\}
$$

This map has the property

$$
f_{c}\left(\Phi_{c}(z)\right)=\Phi_{c}\left(z^{2}\right) \quad z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$. If $J\left(f_{c}\right)$ is connected, one has the Riemann map

$$
\Phi_{c}: \widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \widehat{\mathbb{C}} \backslash K\left(f_{c}\right)
$$

One defines the external ray

$$
R_{C}(\theta):=\left\{\Phi_{c}\left(\rho e^{2 \pi i \theta}\right), \rho>1\right\}
$$

This map has the property

$$
f_{c}\left(\Phi_{c}(z)\right)=\Phi_{c}\left(z^{2}\right) \quad z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

If $J\left(f_{c}\right)$ is locally connected, Φ_{c} extends to

$$
\gamma_{c}:=\partial \mathbb{D}=\mathbb{R} / \mathbb{Z} \rightarrow K\left(f_{c}\right)
$$

Julia sets - II

The Fatou set is $\Omega\left(f_{c}\right):=\mathbb{C} \backslash J\left(f_{c}\right)$. If $J\left(f_{c}\right)$ is connected, one has the Riemann map

$$
\Phi_{c}: \widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \widehat{\mathbb{C}} \backslash K\left(f_{c}\right)
$$

One defines the external ray

$$
R_{c}(\theta):=\left\{\Phi_{c}\left(\rho e^{2 \pi i \theta}\right), \rho>1\right\}
$$

This map has the property

$$
f_{c}\left(\Phi_{c}(z)\right)=\Phi_{c}\left(z^{2}\right) \quad z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

If $J\left(f_{c}\right)$ is locally connected, Φ_{c} extends to

$$
\gamma_{c}:=\partial \mathbb{D}=\mathbb{R} / \mathbb{Z} \rightarrow K\left(f_{c}\right)
$$

and we have

$$
f_{c}\left(\gamma_{c}(\theta)\right)=\gamma_{c}(2 \theta)
$$

Thurston's quadratic minor lamination (QML)

For each f_{c}, pick the minor leaf of the lamination for f_{c} (i.e, the ray pair landing at the critical value (or its root)).

Thurston's quadratic minor lamination (QML)

For each f_{c}, pick the minor leaf of the lamination for f_{c} (i.e, the ray pair landing at the critical value (or its root)). The QML is the union of all minor leaves for all $c \in \mathcal{M}$.

Thurston's quadratic minor lamination (QML)

For each f_{c}, pick the minor leaf of the lamination for f_{c} (i.e, the ray pair landing at the critical value (or its root)). The QML is the union of all minor leaves for all $c \in \mathcal{M}$. The quotient $\mathcal{M}_{\text {abs }}$ of the disk by the lamination is a (locally connected) model for the Mandelbrot set, and homeomorphic to it if MLC holds.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

where $[x, y]$ is the regulated arc between x and y.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

It is a forward invariant, connected subset of the filled Julia set which contains the critical orbit.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is

$$
T_{c}:=\bigcup_{m, n \geq 0}\left[f_{c}^{m}(0), f_{c}^{n}(0)\right]
$$

It is a forward invariant, connected subset of the filled Julia set which contains the critical orbit. The $\operatorname{map} f_{c}$ acts on it.

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f).

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

The core entropy

Definition (W. Thurston)

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy

Definition (W. Thurston)

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

where T_{f} is the Hubbard tree of f.

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D
\end{aligned}
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right)\)

$$
\begin{aligned}
& \operatorname{det}(M-x l)= \\
& =-1-2 x+x^{4}
\end{aligned}
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right) \quad\)| $\operatorname{det}(M-x I)=$ |
| :--- |
| $=-1-2 x+x^{4}$ |
| $\lambda \approx 1.39534$ |

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right) \quad\)| $\operatorname{det}(M-x I)=$ |
| :--- |
| $=-1-2 x+x^{4}$ |
| $\lambda \approx 1.39534$ |
| $h \approx \log 1.39534$ |

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.
Definition (W. Thurston)
The core entropy of f_{θ} is

$$
h(\theta):=h\left(\left.f_{\theta}\right|_{T_{\theta}}\right)
$$

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.

Definition (W. Thurston)
The core entropy of f_{θ} is

$$
h(\theta):=h\left(\left.f_{\theta}\right|_{T_{\theta}}\right)
$$

Question: How does $h(\theta)$ vary with the parameter θ ?

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Question Can you see the Mandelbrot set in this picture?

Monotonicity of entropy

Observation.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<\theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<\theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].
Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If $\theta_{1}<M \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

Core entropy and biaccessibility

The core entropy is also proportional to the dimension of the set of biaccessible angles (Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...)

Core entropy and biaccessibility

The core entropy is also proportional to the dimension of the set of biaccessible angles (Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...)
Definition
θ is biaccessible if $\exists \eta \neq \theta$ s.t. $R(\theta)$ and $R(\eta)$ land at the same point.

Core entropy and biaccessibility

The core entropy is also proportional to the dimension of the set of biaccessible angles (Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...)
Definition
θ is biaccessible if $\exists \eta \neq \theta$ s.t. $R(\theta)$ and $R(\eta)$ land at the same point.
Let us denote the set of biaccessible angles as

$$
B_{c}:=\{\theta \in \mathbb{R} / \mathbb{Z}: \theta \text { is biaccessible }\}
$$

Core entropy and biaccessibility

The core entropy is also proportional to the dimension of the set of biaccessible angles (Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...)

Definition

θ is biaccessible if $\exists \eta \neq \theta$ s.t. $R(\theta)$ and $R(\eta)$ land at the same point.
Let us denote the set of biaccessible angles as

$$
B_{c}:=\{\theta \in \mathbb{R} / \mathbb{Z}: \theta \text { is biaccessible }\}
$$

Theorem (T., Bruin-Schleicher)
If the Hubbard tree of f_{c} is topologically finite, then

$$
\text { H. } \operatorname{dim} B_{c}=\frac{h\left(f_{c}\right)}{\log 2}
$$

The core entropy as a function of external angle
Question (Thurston, Hubbard):
Is $h(\theta)$ a continuous function of θ ?

The Main Theorem: Continuity

Theorem (T.)
The core entropy function $h(\theta)$ extends to a continuous function from \mathbb{R} / \mathbb{Z} to \mathbb{R}.

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree,

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points, which correspond to arcs between postcritical points.

Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading eigenvalue
This works, but you need to know the topology of the tree, and that varies wildly with the parameter!
Idea 2: (Thurston): look at set of pairs of postcritical points, which correspond to arcs between postcritical points. Denote $c_{i}:=f^{i}(0)$ the $i^{\text {th }}$ iterate of the critical point, and let

$$
P:=\left\{\left(c_{i}, c_{j}\right) \quad i, j \geq 0\right\}
$$

the set of pairs of postcritical points

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: non-separated pair

A pair (i, j) is non-separated if c_{i} and c_{j} lie on the same side of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

Computing the entropy: separated pair

A pair (i, j) is separated if c_{i} and c_{j} lie on opposite sides of the critical point.

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

$$
A\left(e_{i, j}\right)=e_{i+1, j+1}
$$

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

$$
A\left(e_{i, j}\right)=e_{i+1, j+1}
$$

- If (i, j) is separated, then $(i, j) \rightarrow(1, i+1)+(1, j+1)$.

$$
A\left(e_{i, j}\right)=e_{1, i+1}+e_{1, j+1}
$$

The algorithm

Let P the cardinality of the set of pairs of postcritical points, and consider $A: \mathbb{R}^{P} \rightarrow \mathbb{R}^{P}$ given by

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

$$
A\left(e_{i, j}\right)=e_{i+1, j+1}
$$

- If (i, j) is separated, then $(i, j) \rightarrow(1, i+1)+(1, j+1)$.

$$
A\left(e_{i, j}\right)=e_{1, i+1}+e_{1, j+1}
$$

Theorem (Thurston; Tan Lei)
The entropy of f_{θ} is given by

$$
h(\theta)=\log \lambda
$$

where λ is the leading eigenvalue of A.
See also Gao, Jung.

The algorithm

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph.

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$.

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$. Note that $P(t)$ can be obtained as the clique polynomial

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$. Note that $P(t)$ can be obtained as the clique polynomial

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$. Note that $P(t)$ can be obtained as the clique polynomial

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

where:

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$. Note that $P(t)$ can be obtained as the clique polynomial

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

where:

- a simple multicycle is a disjoint union of (vertex)-disjoint cycles

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$. Note that $P(t)$ can be obtained as the clique polynomial

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

where:

- a simple multicycle is a disjoint union of (vertex)-disjoint cycles
- $\boldsymbol{C}(\gamma)$ is the number of connected components of γ

Computing entropy: the clique polynomial

Let Γ be a finite, directed graph. Its adjacency matrix is A such that

$$
A_{i j}:=\#\{i \rightarrow j\}
$$

We can consider its spectral determinant

$$
P(t):=\operatorname{det}(I-t A)
$$

Note that λ^{-1} is the smallest root of $P(t)$. Note that $P(t)$ can be obtained as the clique polynomial

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

where:

- a simple multicycle is a disjoint union of (vertex)-disjoint cycles
- $\boldsymbol{C}(\gamma)$ is the number of connected components of γ
- $\ell(\gamma)$ its length.

The clique polynomial: example

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

The clique polynomial: example

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

The clique polynomial: example

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

- two 2-cycles

The clique polynomial: example

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

- two 2-cycles
- one 3-cycle

The clique polynomial: example

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

- two 2-cycles
- one 3-cycle
- one pair of disjoint cycles $(2+3)$

The clique polynomial: example

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

- two 2-cycles
- one 3-cycle
- one pair of disjoint cycles $(2+3)$

$$
P(t)=1-2 t^{2}-t^{3}+t^{5}
$$

Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph.

Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph. Let us suppose that:

Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph. Let us suppose that:

- 「 has bounded outgoing degree;

Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph. Let us suppose that:

- 「 has bounded outgoing degree;- 「 has bounded cycles: for every n there exists finitely many simple cycles of length n

Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph. Let us suppose that:

- 「 has bounded outgoing degree;- 「 has bounded cycles: for every n there exists finitely many simple cycles of length n

Then we define the growth rate of Γ as :

$$
r(\Gamma):=\lim \sup \sqrt[n]{C(\Gamma, n)}
$$

where $C(\Gamma, n)$ is the number of closed paths of length n.

Computing entropy: the infinite clique polynomial

Let Γ with bounded outgoing degree and bounded cycles.

Computing entropy: the infinite clique polynomial

Let Γ with bounded outgoing degree and bounded cycles. Then one can define as a formal power series

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

Computing entropy: the infinite clique polynomial

Let Γ with bounded outgoing degree and bounded cycles. Then one can define as a formal power series

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

Let now $\sigma:=\limsup \sqrt[n]{S(n)}$ where $S(n)$ is the number of simple multi-cycles of length n.

Computing entropy: the infinite clique polynomial

Let Γ with bounded outgoing degree and bounded cycles. Then one can define as a formal power series

$$
P(t)=\sum_{\gamma \text { simple multicycle }}(-1)^{C(\gamma)} t^{\ell(\gamma)}
$$

Let now $\sigma:=\limsup \sqrt[n]{S(n)}$ where $S(n)$ is the number of simple multi-cycles of length n.
Theorem
Let $\sigma \leq 1$. Then $P(t)$ defines a holomorphic function in the unit disk, and its root of minimum modulus is r^{-1}.

How to compute the core entropy without knowing complex dynamics

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $\theta_{i}:=2^{i-1} \theta \bmod 1$, and consider the diameter $\{\theta / 2,(\theta+1) / 2\}$ (= major leaf).

How to compute the core entropy without knowing complex dynamics

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $\theta_{i}:=2^{i-1} \theta \bmod 1$, and consider the diameter $\{\theta / 2,(\theta+1) / 2\}$ (= major leaf). Then:

- (i, j) separated $\Leftrightarrow \theta_{i}$ and θ_{j} lie on opposite side of diameter

How to compute the core entropy without knowing complex dynamics

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $\theta_{i}:=2^{i-1} \theta \bmod 1$, and consider the diameter $\{\theta / 2,(\theta+1) / 2\}$ (= major leaf). Then:

- (i, j) separated $\Leftrightarrow \theta_{i}$ and θ_{j} lie on opposite side of diameter
- (i, j) non-separated $\Leftrightarrow \theta_{i}$ and θ_{j} lie on same side of diam.

Wedges

$(4,5)$
$(3,4) \quad(3,5)$
$(2,3) \quad(2,4) \quad(2,5)$
$(1,2)$
$(1,3)$
$(1,4)$
$(1,5)$

Labeled wedges

Label all pairs as either separated or non-separated

Labeled wedges

Label all pairs as either separated or non-separated
$(3,4) \quad \ldots$
$(2,3)$
$(2,4)$

$$
(1,2) \quad(1,3) \quad(1,4) \quad \ldots
$$

(The boxed pairs are the separated ones.)

From wedges to graphs

Define a graph associated to the wedge as follows:

From wedges to graphs

Define a graph associated to the wedge as follows:

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$

From wedges to graphs

Define a graph associated to the wedge as follows:

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$
- If (i, j) is separated, then $(i, j) \rightarrow(1, i+1)$ and $(i, j) \rightarrow(1, j+1)$.

From wedges to graphs

Define a graph associated to the wedge as follows:

- If (i, j) is non-separated, then $(i, j) \rightarrow(i+1, j+1)$
- If (i, j) is separated, then $(i, j) \rightarrow(1, i+1)$ and $(i, j) \rightarrow(1, j+1)$.

$$
(3,4)
$$

Continuity: sketch of proof

Suppose $\theta_{n} \rightarrow \theta$
(external angles)

Continuity: sketch of proof

Suppose $\theta_{n} \rightarrow \theta$
Then $\quad W_{\theta_{n}} \rightarrow W_{\theta} \quad$ (wedges)

Continuity: sketch of proof

$\begin{array}{lll}\text { Suppose } & \theta_{n} \rightarrow \theta & \text { (external angles) } \\ \text { Then } & W_{\theta_{n}} \rightarrow W_{\theta} & \text { (wedges) } \\ \text { so } & P_{\theta_{n}}(t) \rightarrow P_{\theta}(t) & \text { (spectral determinants) }\end{array}$

Continuity: sketch of proof

$$
\begin{array}{lll}
\text { Suppose } & \theta_{n} \rightarrow \theta & \text { (external angles) } \\
\text { Then } & W_{\theta_{n}} \rightarrow W_{\theta} & \text { (wedges) } \\
\text { so } & P_{\theta_{n}}(t) \rightarrow P_{\theta}(t) & \text { (spectral determinants) } \\
\text { and } & r\left(\theta_{n}\right) \rightarrow r(\theta) & \text { (growth rates) }
\end{array}
$$

Regularity properties of the core entropy

In fact:
Theorem (T. '15)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Regularity properties of the core entropy

In fact:
Theorem (T. '15)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Regularity properties of the core entropy

In fact:
Theorem (T. '15)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Regularity properties of the core entropy

In fact:
Theorem (T. '15)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T. '17)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ.

Regularity properties of the core entropy

In fact:
Theorem (T. '15)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T. '17)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

Regularity properties of the core entropy

In fact:

Theorem (T. '15)

The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T. '17)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

Regularity properties of the core entropy

In fact:

Theorem (T. '15)

The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T. '17)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

(Conjectured Isola-Politi, 1990)

Rays landing on the real slice of the Mandelbrot set

Harmonic measure

Given a subset A of $\partial \mathcal{M}$, the harmonic measure $\nu_{\mathcal{M}}$ is the probability that a random ray lands on A :

$$
\nu_{\mathcal{M}}(A):=\operatorname{Leb}\left(\left\{\theta \in S^{1}: R(\theta) \text { lands on } A\right\}\right)
$$

Harmonic measure

Given a subset A of $\partial \mathcal{M}$, the harmonic measure $\nu_{\mathcal{M}}$ is the probability that a random ray lands on A :

$$
\nu_{\mathcal{M}}(A):=\operatorname{Leb}\left(\left\{\theta \in S^{1}: R(\theta) \text { lands on } A\right\}\right)
$$

For instance, take $A=\mathcal{M} \cap \mathbb{R}$ the real section of the Mandelbrot set.

Harmonic measure

Given a subset A of $\partial \mathcal{M}$, the harmonic measure $\nu_{\mathcal{M}}$ is the probability that a random ray lands on A :

$$
\nu_{\mathcal{M}}(A):=\operatorname{Leb}\left(\left\{\theta \in S^{1}: R(\theta) \text { lands on } A\right\}\right)
$$

For instance, take $A=\mathcal{M} \cap \mathbb{R}$ the real section of the Mandelbrot set. How common is it for a ray to land on the real axis?

Real section of the Mandelbrot set

Theorem (Zakeri, 2000)
The harmonic measure of the real axis is 0 .

Real section of the Mandelbrot set

Theorem (Zakeri, 2000)
The harmonic measure of the real axis is 0 . However,

Real section of the Mandelbrot set

Theorem (Zakeri, 2000)
The harmonic measure of the real axis is 0 . However, the Hausdorff dimension of the set of rays landing on the real axis is 1 .

Real section of the Mandelbrot set

Theorem (Zakeri, 2000)
The harmonic measure of the real axis is 0 . However, the Hausdorff dimension of the set of rays landing on the real axis is 1 .

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{t o p}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{t o p}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\text { H.dim } P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\text { H.dim } P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- The proof is combinatorial.

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\text { H.dim } P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- The proof is combinatorial.
- It does not depend on MLC.

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\text { H.dim } P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- The proof is combinatorial.
- It does not depend on MLC.
- It can be generalized to non-real veins.

Entropy formula along complex veins

A vein is an embedded arc in the Mandelbrot set.

Entropy formula, complex case

A vein is an embedded arc in the Mandelbrot set.

Given a parameter c along a vein, we can look at the set P_{c} of parameter rays which land on the vein between 0 and c.

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$.

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=
$$

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} B_{c}
$$

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} B_{c}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=\mathrm{H} \cdot \mathrm{dim} B_{c}=\mathrm{H} \cdot \mathrm{dim} P_{c}
$$

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ.

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

2. The level sets of the function $h(\theta)$ determines lamination for the Mandelbrot set, and derivative of core entropy defines measure on the lamination

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

2. The level sets of the function $h(\theta)$ determines lamination for the Mandelbrot set, and derivative of core entropy defines measure on the lamination
3. Where are the local maxima of h ?

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

2. The level sets of the function $h(\theta)$ determines lamination for the Mandelbrot set, and derivative of core entropy defines measure on the lamination
3. Where are the local maxima of h ?
(T., Dudko-Schleicher) Given $\theta_{1}<\theta_{2}$ whose rays land at the same parameter, the maximum of $h(\theta)$ on $\left[\theta_{1}, \theta_{2}\right]$ is attained at the dyadic rational of lowest denominator (pseudocenter)

Further directions / questions

1. Theorem (T. 2017)

Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

2. The level sets of the function $h(\theta)$ determines lamination for the Mandelbrot set, and derivative of core entropy defines measure on the lamination
3. Where are the local maxima of h ?
(T., Dudko-Schleicher) Given $\theta_{1}<\theta_{2}$ whose rays land at the same parameter, the maximum of $h(\theta)$ on $\left[\theta_{1}, \theta_{2}\right]$ is attained at the dyadic rational of lowest denominator (pseudocenter)
4. Self-similarity of entropy function at Misiurewicz points

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.

Question. Can we define a transverse measure on \mathcal{L}_{θ} ?

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $f_{\theta}(z)=z^{2}+c_{\theta}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $f_{\theta}(z)=z^{2}+c_{\theta}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.
Theorem (T. '19)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star} m_{\theta}=\lambda_{\theta} m_{\theta}
$$

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $f_{\theta}(z)=z^{2}+c_{\theta}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.
Theorem (T. '19)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star} m_{\theta}=\lambda_{\theta} m_{\theta}
$$

and $h(\theta)=\log \lambda_{\theta}$.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $f_{\theta}(z)=z^{2}+c_{\theta}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.
Theorem (T. '19)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star} m_{\theta}=\lambda_{\theta} m_{\theta}
$$

and $h(\theta)=\log \lambda_{\theta}$.
Such a measure induces a semiconjugacy between $f_{\theta}: T_{\theta} \rightarrow T_{\theta}$ and a piecewise linear model with slope λ_{θ}.

Laminations

Let $\theta \in \mathbb{R} / \mathbb{Z}$, and $f_{\theta}(z)=z^{2}+c_{\theta}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ land at the same point.
Theorem (T. '19)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star} m_{\theta}=\lambda_{\theta} m_{\theta}
$$

and $h(\theta)=\log \lambda_{\theta}$.
Such a measure induces a semiconjugacy between $f_{\theta}: T_{\theta} \rightarrow T_{\theta}$ and a piecewise linear model with slope λ_{θ}.
(Compare: Milnor-Thurston, Sullivan dictionary)

Thurston's quadratic minor lamination (QML)

For each f_{c}, pick the minor leaf of the lamination for f_{c} (i.e, the ray pair landing at the critical value (or its root)).

Thurston's quadratic minor lamination (QML)

For each f_{c}, pick the minor leaf of the lamination for f_{c} (i.e, the ray pair landing at the critical value (or its root)). The QML is the union of all minor leaves for all $c \in \mathcal{M}$.

Thurston's quadratic minor lamination (QML)

For each f_{c}, pick the minor leaf of the lamination for f_{c} (i.e, the ray pair landing at the critical value (or its root)). The QML is the union of all minor leaves for all $c \in \mathcal{M}$. The quotient $\mathcal{M}_{\text {abs }}$ of the disk by the lamination is a (locally connected) model for the Mandelbrot set, and homeomorphic to it if MLC holds.

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them.

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them. Then we define

$$
\mu(\tau):=h\left(T_{c_{2}}\right)-h\left(T_{c_{1}}\right)
$$

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them. Then we define

$$
\mu(\tau):=h\left(T_{c_{2}}\right)-h\left(T_{c_{1}}\right)
$$

It gives $\mathcal{M}_{\text {abs }}$ (rather, a quotient) the structure of a metric tree.

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them. Then we define

$$
\mu(\tau):=h\left(T_{c_{2}}\right)-h\left(T_{c_{1}}\right)
$$

It gives $\mathcal{M}_{\text {abs }}$ (rather, a quotient) the structure of a metric tree.
"Combinatorial bifurcation measure"?

The core entropy for cubic polynomials

The core entropy for cubic polynomials

The core entropy for cubic polynomials

The unicritical slice

The symmetric slice

$$
f(z)=z^{3}+c z
$$

Continuity in higher degree, combinatorial version

Theorem (T. - Yan Gao)
Fix $d \geq 2$. Then the core entropy extends to a continuous function on the space $\mathrm{PM}(d)$ of primitive majors.

Continuity in higher degree, combinatorial version Theorem (T. - Yan Gao)
Fix $d \geq 2$. Then the core entropy extends to a continuous function on the space $\operatorname{PM}(d)$ of primitive majors.

Continuity in higher degree, analytic version

Define \mathcal{P}_{d} as the space of monic, centered polynomials of degree d.

Continuity in higher degree, analytic version

Define \mathcal{P}_{d} as the space of monic, centered polynomials of degree d. One says $f_{n} \rightarrow f$ if the coefficients of f_{n} converge to the coefficients of f.

Continuity in higher degree, analytic version

Define \mathcal{P}_{d} as the space of monic, centered polynomials of degree d. One says $f_{n} \rightarrow f$ if the coefficients of f_{n} converge to the coefficients of f.

Theorem (T. - Yan Gao)
Let $d \geq 2$. Then the core entropy is a continuous function on the space of monic, centered, postcritically finite polynomials of degree d.

The end

Thank you!

